Cassini’s scheduled suicide at Saturn

The maps show the sky at 23:00 BST on the 1st, 22:00 on the 16th and 21.00 on the 30th. (Click on map to enlarge)

The maps show the sky at 23:00 BST on the 1st, 22:00 on the 16th and 21.00 on the 30th. (Click on map to enlarge)

The heroic Cassini mission to Saturn is set to reach its dramatic conclusion on 15 September. After a seven-year journey from Earth, the probe has been studying the planet, its glorious rings and its fascinating moons for the past thirteen years. Now, with its fuel running low, it is time for the NASA probe to plunge into the Saturnian atmosphere where, in the interest of so-called planetary protection, it will disintegrate and vaporise.

To leave it in orbit around the planet would run the risk of it colliding with the rings or one of the moons, with the outside possibility of contaminating them with microbes from the Earth. This was of little concern when Cassini’s mission was planned, and it carried and delivered the European-built Huygens probe which parachuted to the surface of Saturn’s largest moon, Titan. It touched down on a world in which rivers of liquid hydrocarbons, chiefly methane, flow into lakes in a landscape dominated by water-ice mountains.

Now, though, we realise that despite Saturn’s remoteness from the Sun, the possibility of alien life there cannot be discounted. Indeed, it seems clear that its small moon Enceladus has a subsurface watery ocean and there has been talk of sending a mission to search for organic compounds in the plumes of water erupting from geysers on its surface.

Recent orbits of Saturn have seen Cassini piercing the gap between Saturn and its rings, and even skimming the planet’s outer atmosphere. It will continue to collect data as it begins its final suicidal dive into Saturn’s atmosphere on the 15th, but its signal will be lost at around 13:00 BST as aerodynamic forces cause it to tumble and, eventually, break apart and burn up.

The Sun crosses southwards over the equator at 21:02 BST on the 22nd, the moment of our autumnal equinox. Sunrise/sunset times for Edinburgh change from 06:17/20:07 BST on the 1st to 07:14/18:50 on the 30th. The Moon is full on the 6th, at last quarter on the 13th, new on the 20th and at first quarter on the 28th.

Now that Scotland’s persistent summer twilight is behind us, our nights offer views of the Milky Way as it arches directly overhead from the south-west to the north-east at our chart times, carving through the Summer Triangle formed by Deneb, Altair and Vega which now lies just west of the high meridian.

To the east of the Triangle is the distinctive form of the celestial dolphin, Delphinus, where the celebrated English amateur astronomer George Alcock discovered a famous and unusual naked-eye nova fifty summers ago in 1967. I remember watching the stellar outburst as it took five months to reach its peak brightness at magnitude 3.5. Now assigned the variable-star tag HR Delphini, the star is still visible as a twelfth magnitude object through telescopes.

Another 13° east of Delphinus is the globular star cluster Messier 15, 4° north-west of Pegasus’s brightest star, Enif. A tightly packed globe of perhaps 100,000 stars, all very much older than our Sun, M15 lies around 34,000 light years away and looks like a fuzzy star through binoculars.

Saturn is the sole bright planet to appear on our star maps. Look for it as the brightest object low down in the south-south-west at nightfall and even lower in the south-west by our map times, only thirty minutes before it sets. Edging eastwards in Ophiuchus, it shines 4° below-left of the Moon on the 26th.

Jupiter is bright at magnitude -1.7 but hard to see very low in the west-south-west just after sunset. By mid-month it is likely to be lost in the twilight.

Our charts plot the two outer planets, the ice giant world Uranus in Pisces and its near-twin Neptune in Aquarius, though we probably need more detailed charts to identify them through binoculars or telescopes. At magnitude 5.7, Uranus is at the verge of naked-eye visibility, while Neptune reaches opposition on the 5th and is dimmer at magnitude 7.8.

The other planets are about to join Venus low down in our eastern sky at the end of the night. The brilliant morning star shines at magnitude -4.0 when it rises in the north-east at 03:04 for Edinburgh on 1 September, and climbs 25° high into the east by sunrise. Catch it through binoculars before the twilight intervenes on that day and look 1.2° to its left for the Praesepe or Beehive cluster of stars in Cancer. Leaving the cluster behind, Venus tracks east-south-eastwards into Leo to pass 0.5° (a Moon’s breadth) north of the star Regulus on the 20th.

Mercury emerges from the Sun’s glare to stand 18° west of the Sun and 11° below-left of Venus on the 12th. Between the 6th and 23rd it rises more than 80 minutes before sunrise and brightens eightfold from magnitude 1.1 to -1.1. On the 6th, in fact, Mercury lies 2.5° to the right of Regulus which, in turn, is 0.8° to the right of the fainter magnitude 1.8 planet Mars. As Regulus climbs above them, the two planets then converge to lie less than 0.5° apart on the 16th and 17th.

Early risers are in for a special treat when the waning earthlit Moon joins the party on the 17th. On that morning, Venus stands 10° below-left of the Moon and almost 4° above-right of Regulus, with the Mars-Mercury conjunction another 8° below and to the left. On the 18th, the line-up is even more compact as the Moon shifts to lie 0.7° below Regulus. By the 30th, Venus rises in the east-north-east at 04:41 and is 3° above-right of Mars.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on August 31st 2017, with thanks to the newspaper for permission to republish here.