Saturn at its best as noctilucent clouds gleam

The maps show the sky at 01:00 BST on the 1st, midnight on the 16th and 23:00 on the 30th. (Click on map to enlarge)
The first day of June marks the start of our meteorological summer, though some would argue that summer begins on 21 June when (at 05:25 BST) the Sun reaches its most northerly point at the summer solstice.
Sunrise/sunset times for Edinburgh vary surprisingly little from 04:35/21:47 BST on the 1st, to 04:26/22:03 at the solstice and 04:31/22:02 on the 30th. The Moon is at first quarter on the 1st, full on the 9th, at last quarter on the 17th and new on the 24th.
The Sun is already so far north that our nights remain bathed in twilight and it will be mid-July before Edinburgh sees its next (officially) dark and moonless sky. This is a pity, for the twilight swamps the fainter stars and, from northern Scotland, only the brightest stars and planets are in view.
If we travel south, though, the nights grow longer and darker, and the spectacular Milky Way star fields in Sagittarius and Scorpius climb higher in the south. From London at the solstice, for example, official darkness, with the Sun more than 12° below the horizon, lasts for three hours, while both Barcelona and Rome rejoice in more than six hours.
It is in this same area of sky, low in the south in the middle of the night, that we find the glorious ringed planet Saturn. This stands just below the full moon on the 9th and is at opposition, directly opposite the Sun, on the 15th when it is 1,353 million km away and shines at magnitude 0.0, comparable with the stars Arcturus in Bootes and Vega in Lyra. The latter shines high in the east-north-east at our map times and, together with Altair in Aquila and Deneb in Cygnus, forms the Summer Triangle which is a familiar feature of our nights until late-autumn.
Viewed telescopically, Saturn’s globe appears 18 arcseconds wide at opposition while its rings have their north face tipped 27° towards us and span 41 arcseconds. Sadly, Saturn’s low altitude, no more than 12° for Edinburgh, means that we miss the sharpest views although it should still be possible to spy the inky arc of the Cassini division which separates the outermost of the obvious rings, the A ring, from its neighbouring and brighter B ring.
Other gaps in the rings may be hard to spot from our latitudes – we can only envy the view for observers in the southern hemisphere who have Saturn near the zenith in the middle of their winter’s night. For us, Saturn is less than a Moon’s breadth further south over our next two summers, while the ring-tilt begins to decrease again.
On the other hand, we can sympathize with those southern observers for most of them never see noctilucent clouds, a phenomenon for which we in Scotland are ideally placed. Formed by ice condensing on dust motes, their intricate cirrus-like patterns float at about 82 km, high enough to shine with an electric-blue or pearly hue as they reflect the sunlight after any run-of-the-mill clouds are in darkness. Because of the geometry involving the Sun’s position below our horizon, they are often best seen low in the north-north-west an hour to two after sunset, shifting towards the north-north-east before dawn – along roughly the path taken by the bright star Capella in Auriga during the night.
Jupiter dims slightly from magnitude -2.2 to -2.0 but (after the Moon) remains the most conspicuous object in the sky for most of the night. Indeed, the Moon lies close to the planet on the 3rd – 4th and again on the 30th. As the sky darkens at present, it stands some 30° high and just to the west of the meridian, though by the month’s end it is only half as high and well over in the SW. Our star maps plot it in the west-south-west as it sinks closer to the western horizon where it sets two hours later.
The giant planet is slow-moving in Virgo, about 11° above-right of the star Spica and 3° below-left of the double star Porrima. As its distance grows from 724 million to 789 million km, its disk shrinks from 41 to 37 arcseconds in diameter but remains a favourite target for observers.
The early science results from NASA’s Juno mission to Jupiter were released on 25 May. They reveal the atmosphere to be even more turbulent than was thought, with the polar regions peppered by 1,000 km-wide cyclones that are apparently jostling together chaotically. This is in stark contrast to the meteorology at lower latitudes, where organized parallel bands of cloud dominate in our telescopic views. In addition, the planet’s magnetic field is stronger and more lumpy than was expected. Juno last skimmed 3,500 km above the Jovian clouds on 19 May and is continuing to make close passes every 53 days.
Both Mars and Mercury are hidden in the Sun’s glare this month, the latter reaching superior conjunction on the Sun’s far side on the 21st.
Venus, brilliant at magnitude -4.3 to -4.1, is low above our eastern horizon before dawn. It stands at its furthest west of the Sun in the sky, 46°, on 3 June but it rises only 78 minutes before the Sun and stands 10° high at sunrise as seen from Edinburgh. By the 30th, it climbs to 16° high at sunrise, having risen more than two hours earlier. Between these days, it shrinks in diameter from 24 to 18 arcseconds and changes in phase from 49% to 62% illuminated. It lies left of the waning crescent Moon on the 20th and above the Moon on the following morning.
Alan Pickup