Perseids rain as Mars approaches his rival

The maps show the sky at 00:00 BST on the 1st, 23:00 on the 16th and 22:00 on the 31st. (Click on map to enlarge)

The maps show the sky at 00:00 BST on the 1st, 23:00 on the 16th and 22:00 on the 31st. (Click on map to enlarge)

Every year at this time the Earth sweeps through the stream of meteoroids released by Comet 109P/Swift-Tuttle which passed just inside the Earth’s orbit in 1992 and is not due to return until 2126. And every year at this time, some of those meteoroids plunge into our upper atmosphere at 59 km per second, producing a rich display of bright meteors, many leaving glowing trains in their wake. According to some claims, this year’s meteor spectacle could be even better than usual.

The meteors appear in all parts of the sky but, since they are moving in parallel, perspective causes their paths to point away from a so-called radiant point in the constellation Perseus. It has already been active for a week, but it is expected to peak at about 13:00 BST on the 12th when, typically, an observer beneath the radiant and with a perfect dark sky might count 80 or more Perseids per hour. Of course, this year’s peak occurs in daylight for Scotland, but we should still enjoy high rates on our nights of 11/12th and 12/13th.

The radiant, plotted on our north star map, stands in the north-east at nightfall and climbs to lie just east of overhead before dawn. As the radiant climbs, so we face more directly into the Perseids stream and meteor rates climb in sympathy. This means that our morning hours are favoured and we have the extra advantage that the Moon sets in the middle of the night on the critical nights, though moonlight will hinder evening watches. Another bonus is that the nights are much less cold than they are for the year’s other two major showers which occur in the depths of winter.

The suggestions that the Perseids might be particularly active in 2016, with perhaps twice as many meteors as usual, derive from the fact that Jupiter approaches the Perseids stream every 12 years and its gravity might be diverting a segment of the stream closer to the Earth on each encounter. Indeed, there does seem to be a 12-years periodicity in enhanced Perseids displays with the last one in 2004, so we may be due for another special show this month.

Sunrise/sunset times for Edinburgh change from 05:17/21:19 BST on the 1st to 06:16/20:09 on the 31st. The Moon is new on the 2nd, at first quarter on the 10th, full on the 18th and at last quarter on the 25th.

Our chart depicts the Summer Triangle, formed by Deneb, Vega and Altair, high on the meridian as the Plough sinks in the north-west and the “W” of Cassiopeia climbs in the north-east, above the Perseids radiant. The large but rather empty Square of Pegasus balances on a corner in the east-south-east while the Teapot of Sagittarius is toppling westwards on our southern horizon. To its right, and very low in the south-west, is Saturn, the only bright planet visible at our map times.

Saturn hardly moves this month, being stationary against the stars on the 13th when it reverses from westerly to easterly in motion. It lies in Ophiuchus, 6° north of the red supergiant star Antares in Scorpius. Antares is around magnitude 1.0 while Saturn is almost twice as bright at 0.4. Saturn stands above Antares low in the south-south-west as tonight’s twilight fades but are outshone by the Red Planet, Mars, which lies 10° to their right and is three times brighter than Saturn at magnitude -0.8.

Mars, though, is moving eastwards (to the left) at almost a Moon’s-breadth each day and passes between Antares and Saturn, and 1.8° above Antares, on the 24th. Even though Mars dims to magnitude -0.4 by then, it remains much brighter than Antares even though the star’s name comes from the Ancient Greek for “equal to Mars”. Both appear reddish, of course, but for very different reasons – Antares has a bloated “cool” gaseous surface that glows red at about 3,100°C while Mars has a rocky surface which is rich in iron oxide, better known as rust.

The Moon stands above-right of Mars and to the left of Saturn on the 11th when Mars appears only 12 arcseconds wide if viewed through a telescope. Saturn is 17 arcseconds across while its rings span 39 arcseconds and have their north face tipped 26° towards us. By the 31st, Mars has faded further to magnitude -0.3 and lies 4° above-left of Antares.

Observers at our northern latitudes must work hard to spot any other bright planet this month although anyone in the southern hemisphere can enjoy a spectacular trio of them low in the west at nightfall. Seen from Scotland, though, the brilliant (magnitude -3.9) evening star Venus stands barely 5° above our western horizon at sunset and sets itself less than 40 minutes later. We need a pristine western outlook to see it, and quite possibly binoculars to glimpse it against the twilight.

Fainter (magnitude -1.7) is Jupiter which stands currently 27° to the left of Venus and 5° higher so that it sets more than 70 minutes after the Sun. Between them, and considerably fainter, is Mercury which stands furthest from the Sun (27°) on the 16th and, perhaps surprisingly, is enjoying its best evening apparition of the year as seen from the southern hemisphere.

Jupiter sinks lower with each evening and meets Venus on the 27th when Venus passes less than 5 arcminutes north of Jupiter. This is the closest planetary conjunction of the year and would be spectacular were the two not so twilight-bound. As it is, binoculars might show Jupiter 9 arcminutes below and left of Venus on that evening.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on August 1st 2016, with thanks to the newspaper for permission to republish here.