Juno to begin hazardous mission at Jupiter

The maps show the sky at 01:00 BST on the 1st, midnight on the 16th and 23:00 on the 31st. (Click on map to enlarge)

The maps show the sky at 01:00 BST on the 1st, midnight on the 16th and 23:00 on the 31st. (Click on map to enlarge)

The Sun is edging southwards again but our night-long summer twilight subsides only slowly and, given that we also have bright moonlight through mid-July, we must wait until the month’s final week to enjoy a truly dark midnight sky.

From a good vantage point, we may then see the Milky Way as it arches high across our eastern sky, culminating close to the star Deneb in Cygnus. Deneb occupies the top-left corner of the Summer Triangle which remains a feature of our high southern night sky until the autumn. The Triangle was so named by our much-missed Sir Patrick Moore and has its other corners marked by Vega in Lyra and Altair in Aquila.

Sunrise/sunset times for Edinburgh change from 04:32/22:01 BST on the 1st to 05:16/21:21 on the 31st, by which date nautical twilight persists for two hours before dawn and after dusk. The Moon is new on the 4th, at first quarter on the 12th, full on the 19th and at last quarter on the 26th.

As the twilight fades at present, the giant planet Jupiter shines brightly low in the west and Mars, only a little fainter but distinctly reddish in hue, hovers at much the same altitude in the south-south-west. Our third naked-eye planet, Saturn, stands 18° to the east (left) of Mars and is creeping westwards in the southern reaches of the constellation Ophiuchus as Mars begins to accelerate eastwards in Libra.

Jupiter is nearing the end of its apparition as it sinks lower in our evening sky on its way to conjunction on the Sun’s far side in September. Its altitude above Edinburgh’s western horizon one hour after sunset falls from 11° on the 1st to less than 2° on the 31st. By then it will be difficult to spot in the bright twilight, and we will not see it again in our evening sky for another six months.

Moving eastwards in southern Leo, Jupiter remains brighter than any star, though it does fade slightly from magnitude -1.9 to -1.7 as its distance grows between 862 million and 919 million km. Viewed telescopically, its disk appears 34 arcseconds across when it stands 6° to the right of the crescent Moon on the 9th.

Although Jupiter is well past its best for telescopic study, we can expect some of our sharpest views after NASA’s Juno probe enters a highly-eccentric orbit over the planet’s poles early on July 5th UK time – the engine firing to do so is due to last for 35 minutes and end at 04:53 BST on that day. Launched in 2011, and with the benefit of a gravity assist flyby of the Earth in 2013, Juno will have travelled for 2,800 million km to reach Jupiter, not far shy of the distance between the Sun and Uranus.

Juno’s initial orbit is to carry it around Jupiter in 53.5 days, but this is to be reduced by mid-October to one of 14 days that takes within 4,200 to 4,900 km of the equatorial cloud-tops. That path plunges through Jupiter’s hazardous radiation belts and, while it avoids their most deadly regions, Juno’s sensitive electronics need to be located in a first-of-its-kind radiation-shielded vault.

Jupiter owns some of the most interesting moons we know of, but Juno is focused firmly on learning as much as possible about Jupiter’s origins and structure, from its intense magnetosphere all the way down to its core. The probe’s trio of 9-metres long solar panels provide 500 watts of power, making it the first craft to rely on solar power so far from the Sun. If it survives, the plan calls for Juno to dive to a fiery destruction in Jupiter’s atmosphere in February, 2018.

Venus, brilliant at magnitude -3.9, stands closer to the Sun in our evening twilight than Jupiter and is unlikely to be seen from our latitudes. Mercury, much fainter, enters the same area of sky following its superior conjunction on the Sun’s far side on the 7th and is even less likely to be seen.

Mars dims from magnitude -1.4 to -0.8 this month as its distance grows from 86 million to 106 million km and its diameter shrinks from 16 to 13 arcseconds. Telescopes still show some detail on its rusty surface, but it, too, stands lower each evening and by the month’s end it sets before midnight BST. Look for Mars 7° below the gibbous Moon on the evening of the 14th.

The opposing motions of Mars and Saturn mean that their separation in the sky decreases to 11°, with Saturn fainter at magnitude 0.2 to 0.4 and noticeably above-left of Mars by the month’s end. The red supergiant star Antares in Scorpius lies 6° below Saturn while the Moon stands 5° above-right of Saturn on the 15th and 9° to the planet’s left on the 16th.

Viewed telescopically, Saturn appears 18 arcseconds wide at mid-month with the north face of the rings inclined 26° towards us and 40 arcseconds from side to side. Saturn’s main moon, Titan, shines at magnitude 8.5 and is best seen through a telescope as it orbits every16 days. Catch it 3 arcminutes west of Saturn on the 4th and 20th, and a similar distance east on the 11th and 27th.

It happens that my previous note was timely in its warning about noctilucent clouds. The first good displays were sighted within a couple of days, appearing as electric-blue cirrus-like banks low above the north-western horizon after dusk and shifting round into the north-east before dawn. Composed of ice-crystals some 82 km above the ground, we should expect further shows until mid-August.

Alan Pickup

This is a slightly-revised version of Alan’s article published in The Scotsman on July 1st 2016, with thanks to the newspaper for permission to republish here.